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Goal: Dominant QM effects on nuclear dynamics
of large molecular systems in the SC regime on
a long-time scale

e Efficient and accurate for SC systems

e Well-defined QM and classical limit, error assessment

e Systematically improvable and stable for long times

e Energy and norm conserving

e Invariant under standard coordinate transformation



Method: Bohmian trajectory framework and semiclassical
Implementation

Interacting (coherent) trajectories are essential for long-time dy-
namics (to avoid ‘sign" problem etc)

Features of implementation

e Use trajectory weights rather than solve for A(xz,t)
w = A?(z,t)drs : dw/dt = 0O for closed systems. Normaliza-
tion is conserved

e Approximate Quantum Potential
based on pu = (—zﬁA‘l\T’A + vs) W
p = VS5 — classical component
r = VA/A — nonclassical component

e Approximate r rather than A(x,t); averaging over density
avoids singularity problem



AQP from nonclassical momentum:
Represent r in a small basis f(x);, 7r =5 f
Find s by minimizing [; equivalent to minimizing AQP

I={(r—7% V=0

- Linear algebra

- Coefficients & are in terms the moments of trajectory distribu-
tion

- Single sums over trajectories — scales as classical propagation
- The only addition to classical trajectory propagation — cheap
in Mmany dimensions

AQP U = 2??1( 'FI)

— Energy is conserved

— 7=0, U =0 - classical limit

— complete basis f(z) — QM limit

— linear basis (Gaussian wavepacket) — Linearized Quantum Force



Model description of quantum effects using approximate
nonclassical momentum

e Wavefunction energy distribution, basic bifurcation - linear
approximation

e Tunneling/description of reaction channels - domains/subspaces

e EXxcited states prefactors to the polar part

e Nonadiabatic dynamics prefactors + matrix formulations

e Description of zero point energy in anharmonic potentials
take a suitable (beyond linear) basis



O+H, performed as the standard QM calculation
Ground state-to-all probability vs collision energy

Theory was generalized to
arbitrary coordinate systems

Reaction probabilities for the
wavepacket initialized on 3P
obtained using QM (solid
line), AQP with (circles)
and without (dash) exponen-
tial function, and classical
(crosses) propagation meth-
ods: a) Probability to 2M35;
b) Probability to 2I'IUQ; c) — — .
Probability summed over all ;? o %{P(Hp)
electronic states. g
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The main challenge: long time stability

(a) Ground state QM (circles) and AQP with exponential basis
function (line). (b) AQP trajectories. (c) Gaussian WP: QM
(circles), AQP with (thick line) and without (thin line) exponen-
tial basis function. (d) |C(t)| of the Gaussian wavepacket.

(a) Time [a. u.] Time [a. u.] (D)

Position

2000

400
Time |a. u.] (d)
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General solution for stable long-time description
of ZPE?

Improving ZPE with semi-empirical friction
In anharmonic systems looses ZPE or quantum potential energy
due to unphysical decoherence of trajectories

Requirements on the correcting force:

(i) Galilei invariant

(ii) vanish when the propagation is exact

(iii) vanish in the classical limit of zero quantum potential

(iv) in case of separable motion, this force should not influence
the exact degrees of freedom



Functional form
In anharmonic potential error in momentum d6p(t) and in position

52(t) = /; o)y (1)

T

Error in quantum potential due to dx (%)

. ) ) toap(T
Ulz(£) + 62(8)] ~ Ulz(8)] + U'[z(1)] A f:i_  ar. (2)
resulting in a deviation oF of the force
_ d o t 5'}5’(7') _
5F_—£iam@nk m.ﬁ). (3)

To compensate introduce a friction-like force, Fp. ~ —0F

Fp, = (V- 9TUEO)) [[@0) - 5())dr. (4)

The friction coefficient n = 1 if expansion is exact, otherwise n
is adjustable.
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Displaced quantum tra-
jectories for a coherent
Gaussian wavepacket:
(a) momenta vs po-
sitions of trajectories
without (solid line)
and with the initial
displacement (dash); (b)
momenta vs positions
of the initially displaced
trajectories  with the
friction force coefficient
n=1{1, 0.5, 2}.
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Dynamics in the Morse
potential. (a) The am-
plitude of the density cor-
relation function, C(t) =
(p(O)]p(t)), (b) quantum
energy, (U), and (c) to-
tal energy of the system
as a function of time are
obtained with the LQF
method for n = 0 (dot-
dash line), n = 1 (dash
line) and n = 2.5 (thin
solid line). The quan-
tum result is shown with
a thick solid line on all
panels. On panel c) re-
sult for n = Ois indistin-
guishable from the exact
energy.



Balancing approximation errors in a more rigorous
(compared to semi-empirical friction) way

Linear r is cheap, robust but describes ZPE on short time-scale
[ — 0O once trajectories “dissociate”

“Graceful” handling of approximated diff equations
based on the analytical solutions to models

p=po+ prz+ 5:1:2, |fg5';1|2 — exp(—amz)(l +o(x — ;1:0))2

Stabilize with respect to small nonlinearities by
using both, classical and nonclassical momenta

—mr = (rV + "?2/2)3} ~ CPr 4+ 2C"(p—p)
m(p+ V") = (rV + "?2/2)?‘ ~C'r+2C"(r —7)

SE 1 CAUG



Technical detalls

Conservation of energy is a bit trickier: r and p are coupled
ra=0C, - f, dE (70 (C'g — CPF)) )
C =[G/ .¢ .. dt m

M s block diagonal, with blocks / M O ﬁp\ /(_j?“\ /B‘r\
/7~ A Only S needsto Nl .l e | = | B
S = <f®f> be inverted ? 11/1 D C B
\D" D" 0 ) \ A /) \0)

For example, B" = _%<(V R f)T>

Size of matrix 2N, Ny, +1 , computational complexity Ntraj N (%L-m
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Position

Hydrogen molecule
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1 a.
u.=1/40 fs

Quantum energy

Trajectory location

Trajectories; up to 200
oscillations or 1.5 ps



Rescaled (more quantum!) hydrogen molecule

Morse oscillator
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Good tests for multidimensional systems?
nothing to compare with

We use our own model of a single reactive Eckart
potential and many Morse oscillators (N, . .=17),

all “coupled” by a unitary transformation

bound

/Of-—% —K  —K \
O k 14+5 15
k 0 1+ 0

\R 15 3 1+ﬁ)
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Rective coordinate + environment
(oscillator)

— AQP x=0
« AQPk=0.2
. —- QM Morse

Quantum energy

L / | “Coupling” by rotation:

7 ———— positions after 15 vibrations

g .
£
z

Rotation: Quantum energy for Ng,, = 2 and positions of trajectories
after 14 oscillation periods
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High dimensionality

E!l 1 I 1 I I

-::IJ:»I{.\'d.Im -1)

Time

Quantum energy per vibrational degree of freedom N, = {10,20,40}.
QM result for a single Morse oscillator is shown with a thin solid line.

Achieved long-time ZPE description in high dimension

for open reaction coordinate
Need to do double well to model proton transfer
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Convergence with the number of
trajectories

TABLE I: Accuracy of the average quantum potential (U') over 15 oscillation periods for 10—, 20—
and 40—dimensional systems. Number of trajectories is given in the top row. A is the relative
average difference and o is the standard deviation for (U) obtained with N, j <2 x 10* trajectories

compared to the N ; =4 X 10* calculation.

Niraj|5x 107151042 10%{5x 107 |1 x 10%]2 5 10* 4 x 10*

imrdz':fn A [%] o [%} <(/'T>
10 | 1.68 | 0.84 | 052 | 2.16 | 1.21 | 0.62 | 41.44

20 | 207 | 1.09 | 0.40 | 292 | 1.59 | 1.09 | §7.07
40 = 0.89 | 0.32 = 258 | 1.22 | 177.

=I
o
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Summary

Bohmian formulation is an excellent foundation for a
semiclassical method in coordinate space

Long time stabilitly requires modification of the
differential equation (is it a general conclusion?)

MULTI-dimensional anharmonic systems are now
easy to do

Next step: systems with multiple minima (double
well). At present the multiple minima DOF quickly
become nearly classical

— We plan to use subspaces, but balancing all errors is so far
too tricky for us
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